Automated modeling of coiled coils: application to the GCN4 dimerization region.
نویسندگان
چکیده
A novel approach for the modeling of coiled coils through molecular dynamics is described and applied to the dimerization region of the yeast transcriptional activator GCN4. Initially, a model is created consisting of C alpha atoms only, representing an idealized coiled coil with infinite pitch. Human bias in the placing of the other atoms is reduced by an automatic building procedure using simulated annealing with simple geometric restraints. The resulting all-atom model is then allowed to relax during a short molecular dynamics run using an empirical energy function and weak restraints which reflect the coiled coil assumption. These models are then further refined using unrestrained molecular dynamics in water. In this report we test the model-building procedure on the known dimerization region of catabolyte gene activator protein (CAP), part of which forms a coiled coil, and we predict the structure of the coiled coil dimerization region (the 'leucine zipper' domain) of GCN4. Several models are built, starting from different arrangements of the C alpha atoms in the initial structures. The final structures show similar crossing angles of the coiled coil, although this was not used as a restraint in the calculation. The leucines adopt a ladder-like conformation around the 2-fold axis of the coiled coil. A number of electrostatic interactions could be identified which may contribute to the stability of the helical structure of the monomers and of the dimer.
منابع مشابه
Method for predicting the state of association of discretized protein models. Application to leucine zippers.
A method that employs a transfer matrix treatment combined with Monte Carlo sampling has been used to calculate the configurational free energies of folded and unfolded states of lattice models of proteins. The method is successfully applied to study the monomer-dimer equilibria in various coiled coils. For the short coiled coils, GCN4 leucine zipper, and its fragments, Fos and Jun, very good a...
متن کاملCrystal structure of GCN4-pIQI, a trimeric coiled coil with buried polar residues.
Coiled coils consist of two or more alpha-helices wrapped around each other with a superhelical twist. The interfaces between helices of a coiled coil are formed by hydrophobic amino acid residues packed in a "knobs-into-holes" arrangement. Most naturally occurring coiled coils, however, also contain buried polar residues, as do the cores of the majority of naturally occurring globular proteins...
متن کاملX-ray scattering indicates that the leucine zipper is a coiled coil.
Dimerization of the bZIP class of eukaryotic transcriptional control proteins requires a sequence motif called the leucine zipper. We have grown two distinct crystal forms of a 33-amino acid peptide corresponding to the leucine zipper of the yeast transcriptional activator GCN4. This peptide is known to form a dimer of parallel helices in solution. X-ray scattering from both crystal forms shows...
متن کاملDo interhelical side chain-backbone hydrogen bonds participate in formation of leucine zipper coiled coils?
The leucine zipper proteins are a group of transcriptional regulators that dimerize to form a DNA binding domain. It has been proposed that this dimerization results from the hydrophobic association of the alpha-helices of two leucine zipper monomers into a coiled coil. We propose a model for a coiled coil based on a periodic hydrophobic-hydrophilic amino acid motif found in the leucine zipper ...
متن کاملA switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants.
Coiled-coil sequences in proteins consist of heptad repeats containing two characteristic hydrophobic positions. The role of these buried hydrophobic residues in determining the structures of coiled coils was investigated by studying mutants of the GCN4 leucine zipper. When sets of buried residues were altered, two-, three-, and four-helix structures were formed. The x-ray crystal structure of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering
دوره 4 6 شماره
صفحات -
تاریخ انتشار 1991